Effects of rapid thermal annealing on device characteristics of InGaAs/GaAs quantum dot infrared photodetectors
نویسندگان
چکیده
In this work, rapid thermal annealing was performed on InGaAs/GaAs quantum dot infrared photodetectors QDIPs at different temperatures. The photoluminescence showed a blueshifted spectrum in comparison with the as-grown sample when the annealing temperature was higher than 700 °C, as a result of thermal interdiffusion of the quantum dots QDs . Correspondingly, the spectral response from the annealed QDIP exhibited a redshift. At the higher annealing temperature of 800 °C, in addition to the largely redshifted photoresponse peak of 7.4 m compared with the 6.1 m of the as-grown QDIP , a high energy peak at 5.6 m 220 meV was also observed, leading to a broad spectrum linewidth of 40%. This is due to the large interdiffusion effect which could greatly vary the composition of the QDs and thus increase the relative optical absorption intensity at higher energy. The other important detector characteristics such as dark current, peak responsivity, and detectivity were also measured. It was found that the overall device performance was not affected by low annealing temperature, however, for high annealing temperature, some degradation in device detectivity but not responsivity was observed. This is a consequence of increased dark current due to defect formation and increased ground state energy. © 2006 American Institute of Physics. DOI: 10.1063/1.2202704
منابع مشابه
Effect of GaP strain compensation layers on rapid thermally annealed InGaAs/GaAs quantum dot infrared photodetectors grown by metal-organic chemical-vapor deposition
The effect of GaP strain compensation layers was investigated on ten-layer InGaAs/GaAs quantum dot infrared photodetectors QDIPs grown by metal-organic chemical-vapor deposition. Compared with the normal QDIP structure, the insertion of GaP has led to a narrowed spectral linewidth and slightly improved detector performance. A more significant influence of GaP was observed after the structure wa...
متن کاملElectric-field and space-charge distributions in InAs/GaAs quantum-dot infrared photodetectors: ensemble Monte Carlo particle modeling
We proposed a simplified quasi-three-dimensional model for nonequilibrium electron transport in quantum dot infrared photodetectors (QDIPs) based on an ensemble Monte Carlo particle method. Invoking the developed model, we calculated the electric-field and spacecharge distributions, in InAs/GaAs and InGaAs/GaAs QDIPs. q 2003 Elsevier Science Ltd. All rights reserved.
متن کاملInfluence of rapid thermal annealing on a 30 stack InAs/GaAs quantum dot infrared photodetector
متن کامل
High-quality InP nanoneedles grown on silicon
Articles you may be interested in High-quality 1.3 m-wavelength GaInAsN/GaAs quantum wells grown by metalorganic vapor phase epitaxy on vicinal substrates Appl. Relaxed, high-quality InP on GaAs by using InGaAs and InGaP graded buffers to avoid phase separation High-detectivity InAs quantum-dot infrared photodetectors grown on InP by metal–organic chemical–vapor deposition Appl. High detectivit...
متن کاملModeling of High Temperature GaN Quantum Dot Infrared Photodetectors
In this paper, we present calculations for different parameters of quantum dot infrared photodetectors. We considered a structure which includes quantum dots with large conduction-band-offset materials (GaN/AlGaN). Single band effective mass approximation has been applied in order to calculate the electronic structure. Throughout the modeling, we tried to consider the limiting factors which dec...
متن کامل